个人概况
姓名:习佳宁 性别:男
职称:副教授 导师资格:硕士生导师
单位:广州医科大学生物医学工程学院
学历:博士研究生 毕业院校:中国科学技术大学
招生专业:生物医学工程
电子邮件:xjn@gzhmu.edu.cn
通信地址:广州市番禺区新造镇广州医科大学番禺校区
研究方向
1、生物信息学:主要围绕基因组、转录组、表观组等组学的测序/高通量芯片数据分析,旨在挖掘高通量生物分子层面的异常模式与致病因素。
2、智能诊断算法:主要围绕医学语义知识、医学影像数据、医学临床数据等相关信息,旨在通过智能推理算法实现疾病的智能辅助诊断。
所获奖项/荣誉
1、西安市自然科学优秀学术论文奖,2020,西安市科学技术协会/西安市人力资源和社会保障局
2、安徽省生物医学工程年会优秀海报奖,2015,安徽省生物医学工程学会
3、安徽省普通高等学校品学兼优毕业生(省级优秀毕业生),2018,安徽省教育厅
4、硕士研究生国家奖学金,2015,中华人民共和国教育部
5、国家奖学金,2012,中华人民共和国教育部
指导学生获得的科研项目和奖项
1. SCI学术论文:Xie Fei, Jianing Xi*, and Qun Duan. "Driver Attribute Filling for Genes in Interaction Network via Modularity Subspace-Based Concept Learning from Small Samples." Complexity, 2020 (2020), 6643551.
社会兼职
1.国际学术期刊编辑:Frontiers in Genetics (SCI中科院2区)、Mathematical Biosciences and Engineering (SCI)客座编辑、Computational Biology and Bioinformatics编委
2. 国际SCI期刊审稿人:IEEE Transactions on Image Processing, Bioinformatics, Zoological Research, Genomics, Proteomics & Bioinformatics, IEEE/ACM Transactions on Computational Biology and Bioinformatics , BMC Bioinformatics, Journal of Biomedical Informatics, Neurocomputing, Cancer Management and Research, Technology in Cancer Research & Treatment, Journal of Medical Imaging and Health Informatics, Technology in Cancer Research & Treatment, Connection Science
3. 国际会议审稿人:CVPR 2022 (CCF A类), ICCV 2021/2022 (CCF A类), BIBM 2020 (CCF B类), ICME 2021 (CCF B类), ICIP 2021/2022 (CCF C类)
4. 曾任中国科大IEEE学生分会主席(2014-2015),获中国科大校级优秀学生干部荣誉称号
5.中国医科大学主办课程“生物信息及数据挖掘”线上培训班授课教师
6.中国科学技术大学 信息论(2015, 2016, 2017春)/电磁学(2014, 2015, 2016秋)助教(获校级优秀助教荣誉,全校前5%)
主持科研/教学项目
1、主持:国家级项目,国家自然科学基金青年科学基金项目,61901322,面向肿瘤异质性的亚群特异性驱动基因计算表征及预测研究,24.5万元,在研
2、主持:国家级项目,中国博士后科学基金会面上项目,2020M673494,肿瘤异质性矩阵化建模及癌症驱动基因识别算法研究,8万元, 结题
部分代表性第一和通讯作者论文:
1) Xi J., Yuan X., Wang M., et al. "Inferring subgroup specific driver genes from heterogeneous cancer samples via subspace learning with subgroup indication" [J]. Bioinformatics, 2020, 36(6): 1855–1863. (SCI,Top期刊)
2) Xi J., Ye L., Huang Q., et al. "Tolerating Data Missing in Breast Cancer Diagnosis from Clinical Ultrasound Reports via Knowledge Graph Inference" [C], Proceedings of the 27th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD), 2021. Aug 14-18, Singapore, (pp. 3756-3764). (CCF A类会议)
3) Xi J., Miao Z., Liu L., et. al. "Knowledge Tensor Embedding Framework with Association Enhancement for Breast Ultrasound Diagnosis of Limited Labeled Samples" [J], Neurocomputing, 2021, 468: 60-70. (SCI,Top期刊)
4)Xi J., Li A., Wang M. "HetRCNA: a novel method to identify recurrent copy number alternations from heterogeneous tumor samples based on matrix decomposition framework" [J], IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB), 2020, 17(2): 422-434. (SCI)
5)Xi J., Li A., Wang M. "A novel unsupervised learning model for detecting driver genes from pan-cancer data through matrix tri-factorization framework with pairwise similarities constraints" [J], Neurocomputing, 2018, 296: 61-73. (SCI,Top期刊)
6)Xi J., Wang M., Li A. "Discovering mutated driver genes through a robust and sparse co-regularized matrix factorization framework with prior information from mRNA expression patterns and interaction network" [J]. BMC Bioinformatics, 2018, 19(1): 214. (SCI)
7) Xi J., Li A. "Discovering recurrent copy number aberrations in complex patterns via non-negative sparse singular value decomposition" [J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB), 2016, 13(4): 656-668. (SCI)
8)Xi J., Chen J., Wang Z., et al. "Simultaneous Segmentation of Fetal Hearts and Lungs for Medical Ultrasound Images via an Efficient Multi-scale Model Integrated with Attention Mechanism" [J], Ultrasonic Imaging, 2021, 01617346211042526. (SCI)
9)Xi J., Wang M., Li A. "Discovering potential driver genes through an integrated model of somatic mutation profiles and gene functional information” [J]. Molecular BioSystems, 2017, 13(10): 2135-2144. (SCI)
10)Xi J., Li A., Wang M. "A novel network regularized matrix decomposition method to detect mutated cancer genes in tumour samples with inter-patient heterogeneity" [J]. Scientific Reports, 2017, 7(1), 2855. (SCI)
11)Xi J., Wang M., Li A. "DGPathinter: a novel model for identifying driver genes via knowledge-driven matrix factorization with prior knowledge from interactome and pathways" [J]. PeerJ Computer Science, 2017, 3(1), e133. (SCI)
12) Xi J., Yu, Z. "Editorial: Unsupervised Learning Models for Unlabeled Genomic, Transcriptomic & Proteomic Data" [J]. Frontiers in Genetics, 2021, 12(1): 2235. (SCI)
13)Xi J., Li A., Wang M. "An efficient nonnegative matrix factorization model for finding cancer associated genes by integrating data from genome, transcriptome and interactome" [C], 52th Annual Conference on Information Sciences and Systems (CISS), 2018, 1-6. (EI)
14)习佳宁, 刘元宁, 王明会, 等 "基于多元方差分析的成对肿瘤SNP array数据分段算法" [J]. 科学通报, 2014, 59(32): 3204-3208. (核心期刊,中文核心期刊要目总览排序:综合性科学技术-第1位 (2014) )
15)Yuan X., Li J., Bai J., Xi J.* "A local outlier factor-based detection of copy number variations from NGS data" [J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB), 2021, 18(5): 1811-1820. (SCI,通讯作者)
16)Xie, F., Xi, J.*, Duan Q. "Driver Attribute Filling for Genes in Interaction Network via Modularity Subspace-Based Concept Learning from Small Samples" [J]. Complexity, 2020, 2020(1), 6643551. (SCI,通讯作者)
授权专利
1)习佳宁; 黄庆华; 互斥性约束图拉普拉斯的异质性癌症驱动基因识别方法, 2020-6-23, 中国, ZL202010583114.9(已授权)